3.102 \(\int \frac{x^2 (d^2-e^2 x^2)^{3/2}}{d+e x} \, dx\)

Optimal. Leaf size=113 \[ \frac{d^3 x \sqrt{d^2-e^2 x^2}}{8 e^2}+\frac{d (4 d-3 e x) \left (d^2-e^2 x^2\right )^{3/2}}{12 e^3}-\frac{\left (d^2-e^2 x^2\right )^{5/2}}{5 e^3}+\frac{d^5 \tan ^{-1}\left (\frac{e x}{\sqrt{d^2-e^2 x^2}}\right )}{8 e^3} \]

[Out]

(d^3*x*Sqrt[d^2 - e^2*x^2])/(8*e^2) + (d*(4*d - 3*e*x)*(d^2 - e^2*x^2)^(3/2))/(12*e^3) - (d^2 - e^2*x^2)^(5/2)
/(5*e^3) + (d^5*ArcTan[(e*x)/Sqrt[d^2 - e^2*x^2]])/(8*e^3)

________________________________________________________________________________________

Rubi [A]  time = 0.131154, antiderivative size = 113, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.259, Rules used = {1639, 12, 785, 780, 195, 217, 203} \[ \frac{d^3 x \sqrt{d^2-e^2 x^2}}{8 e^2}+\frac{d (4 d-3 e x) \left (d^2-e^2 x^2\right )^{3/2}}{12 e^3}-\frac{\left (d^2-e^2 x^2\right )^{5/2}}{5 e^3}+\frac{d^5 \tan ^{-1}\left (\frac{e x}{\sqrt{d^2-e^2 x^2}}\right )}{8 e^3} \]

Antiderivative was successfully verified.

[In]

Int[(x^2*(d^2 - e^2*x^2)^(3/2))/(d + e*x),x]

[Out]

(d^3*x*Sqrt[d^2 - e^2*x^2])/(8*e^2) + (d*(4*d - 3*e*x)*(d^2 - e^2*x^2)^(3/2))/(12*e^3) - (d^2 - e^2*x^2)^(5/2)
/(5*e^3) + (d^5*ArcTan[(e*x)/Sqrt[d^2 - e^2*x^2]])/(8*e^3)

Rule 1639

Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq, x], f = Coeff
[Pq, x, Expon[Pq, x]]}, Simp[(f*(d + e*x)^(m + q - 1)*(a + c*x^2)^(p + 1))/(c*e^(q - 1)*(m + q + 2*p + 1)), x]
 + Dist[1/(c*e^q*(m + q + 2*p + 1)), Int[(d + e*x)^m*(a + c*x^2)^p*ExpandToSum[c*e^q*(m + q + 2*p + 1)*Pq - c*
f*(m + q + 2*p + 1)*(d + e*x)^q - 2*e*f*(m + p + q)*(d + e*x)^(q - 2)*(a*e - c*d*x), x], x], x] /; NeQ[m + q +
 2*p + 1, 0]] /; FreeQ[{a, c, d, e, m, p}, x] && PolyQ[Pq, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 785

Int[(x_)*((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[d^m*e^m, Int[(x*(a + c*x^2)^(m
 + p))/(a*e + c*d*x)^m, x], x] /; FreeQ[{a, c, d, e, p}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && ILtQ[
m, 0] && EqQ[m, -1] &&  !ILtQ[p - 1/2, 0]

Rule 780

Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(((e*f + d*g)*(2*p
 + 3) + 2*e*g*(p + 1)*x)*(a + c*x^2)^(p + 1))/(2*c*(p + 1)*(2*p + 3)), x] - Dist[(a*e*g - c*d*f*(2*p + 3))/(c*
(2*p + 3)), Int[(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, p}, x] &&  !LeQ[p, -1]

Rule 195

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^p)/(n*p + 1), x] + Dist[(a*n*p)/(n*p + 1),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^2 \left (d^2-e^2 x^2\right )^{3/2}}{d+e x} \, dx &=-\frac{\left (d^2-e^2 x^2\right )^{5/2}}{5 e^3}-\frac{\int \frac{5 d e^3 x \left (d^2-e^2 x^2\right )^{3/2}}{d+e x} \, dx}{5 e^4}\\ &=-\frac{\left (d^2-e^2 x^2\right )^{5/2}}{5 e^3}-\frac{d \int \frac{x \left (d^2-e^2 x^2\right )^{3/2}}{d+e x} \, dx}{e}\\ &=-\frac{\left (d^2-e^2 x^2\right )^{5/2}}{5 e^3}-\frac{\int x \left (d^2 e-d e^2 x\right ) \sqrt{d^2-e^2 x^2} \, dx}{e^2}\\ &=\frac{d (4 d-3 e x) \left (d^2-e^2 x^2\right )^{3/2}}{12 e^3}-\frac{\left (d^2-e^2 x^2\right )^{5/2}}{5 e^3}+\frac{d^3 \int \sqrt{d^2-e^2 x^2} \, dx}{4 e^2}\\ &=\frac{d^3 x \sqrt{d^2-e^2 x^2}}{8 e^2}+\frac{d (4 d-3 e x) \left (d^2-e^2 x^2\right )^{3/2}}{12 e^3}-\frac{\left (d^2-e^2 x^2\right )^{5/2}}{5 e^3}+\frac{d^5 \int \frac{1}{\sqrt{d^2-e^2 x^2}} \, dx}{8 e^2}\\ &=\frac{d^3 x \sqrt{d^2-e^2 x^2}}{8 e^2}+\frac{d (4 d-3 e x) \left (d^2-e^2 x^2\right )^{3/2}}{12 e^3}-\frac{\left (d^2-e^2 x^2\right )^{5/2}}{5 e^3}+\frac{d^5 \operatorname{Subst}\left (\int \frac{1}{1+e^2 x^2} \, dx,x,\frac{x}{\sqrt{d^2-e^2 x^2}}\right )}{8 e^2}\\ &=\frac{d^3 x \sqrt{d^2-e^2 x^2}}{8 e^2}+\frac{d (4 d-3 e x) \left (d^2-e^2 x^2\right )^{3/2}}{12 e^3}-\frac{\left (d^2-e^2 x^2\right )^{5/2}}{5 e^3}+\frac{d^5 \tan ^{-1}\left (\frac{e x}{\sqrt{d^2-e^2 x^2}}\right )}{8 e^3}\\ \end{align*}

Mathematica [A]  time = 0.132477, size = 112, normalized size = 0.99 \[ \frac{\sqrt{d^2-e^2 x^2} \left (\sqrt{1-\frac{e^2 x^2}{d^2}} \left (8 d^2 e^2 x^2-15 d^3 e x+16 d^4+30 d e^3 x^3-24 e^4 x^4\right )+15 d^4 \sin ^{-1}\left (\frac{e x}{d}\right )\right )}{120 e^3 \sqrt{1-\frac{e^2 x^2}{d^2}}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^2*(d^2 - e^2*x^2)^(3/2))/(d + e*x),x]

[Out]

(Sqrt[d^2 - e^2*x^2]*(Sqrt[1 - (e^2*x^2)/d^2]*(16*d^4 - 15*d^3*e*x + 8*d^2*e^2*x^2 + 30*d*e^3*x^3 - 24*e^4*x^4
) + 15*d^4*ArcSin[(e*x)/d]))/(120*e^3*Sqrt[1 - (e^2*x^2)/d^2])

________________________________________________________________________________________

Maple [B]  time = 0.056, size = 222, normalized size = 2. \begin{align*} -{\frac{1}{5\,{e}^{3}} \left ( -{x}^{2}{e}^{2}+{d}^{2} \right ) ^{{\frac{5}{2}}}}-{\frac{dx}{4\,{e}^{2}} \left ( -{x}^{2}{e}^{2}+{d}^{2} \right ) ^{{\frac{3}{2}}}}-{\frac{3\,{d}^{3}x}{8\,{e}^{2}}\sqrt{-{x}^{2}{e}^{2}+{d}^{2}}}-{\frac{3\,{d}^{5}}{8\,{e}^{2}}\arctan \left ({x\sqrt{{e}^{2}}{\frac{1}{\sqrt{-{x}^{2}{e}^{2}+{d}^{2}}}}} \right ){\frac{1}{\sqrt{{e}^{2}}}}}+{\frac{{d}^{2}}{3\,{e}^{3}} \left ( - \left ({\frac{d}{e}}+x \right ) ^{2}{e}^{2}+2\,de \left ({\frac{d}{e}}+x \right ) \right ) ^{{\frac{3}{2}}}}+{\frac{{d}^{3}x}{2\,{e}^{2}}\sqrt{- \left ({\frac{d}{e}}+x \right ) ^{2}{e}^{2}+2\,de \left ({\frac{d}{e}}+x \right ) }}+{\frac{{d}^{5}}{2\,{e}^{2}}\arctan \left ({x\sqrt{{e}^{2}}{\frac{1}{\sqrt{- \left ({\frac{d}{e}}+x \right ) ^{2}{e}^{2}+2\,de \left ({\frac{d}{e}}+x \right ) }}}} \right ){\frac{1}{\sqrt{{e}^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(-e^2*x^2+d^2)^(3/2)/(e*x+d),x)

[Out]

-1/5*(-e^2*x^2+d^2)^(5/2)/e^3-1/4*d*x*(-e^2*x^2+d^2)^(3/2)/e^2-3/8*d^3*x*(-e^2*x^2+d^2)^(1/2)/e^2-3/8/e^2*d^5/
(e^2)^(1/2)*arctan((e^2)^(1/2)*x/(-e^2*x^2+d^2)^(1/2))+1/3*d^2/e^3*(-(d/e+x)^2*e^2+2*d*e*(d/e+x))^(3/2)+1/2*d^
3/e^2*(-(d/e+x)^2*e^2+2*d*e*(d/e+x))^(1/2)*x+1/2*d^5/e^2/(e^2)^(1/2)*arctan((e^2)^(1/2)*x/(-(d/e+x)^2*e^2+2*d*
e*(d/e+x))^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(-e^2*x^2+d^2)^(3/2)/(e*x+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.95208, size = 205, normalized size = 1.81 \begin{align*} -\frac{30 \, d^{5} \arctan \left (-\frac{d - \sqrt{-e^{2} x^{2} + d^{2}}}{e x}\right ) +{\left (24 \, e^{4} x^{4} - 30 \, d e^{3} x^{3} - 8 \, d^{2} e^{2} x^{2} + 15 \, d^{3} e x - 16 \, d^{4}\right )} \sqrt{-e^{2} x^{2} + d^{2}}}{120 \, e^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(-e^2*x^2+d^2)^(3/2)/(e*x+d),x, algorithm="fricas")

[Out]

-1/120*(30*d^5*arctan(-(d - sqrt(-e^2*x^2 + d^2))/(e*x)) + (24*e^4*x^4 - 30*d*e^3*x^3 - 8*d^2*e^2*x^2 + 15*d^3
*e*x - 16*d^4)*sqrt(-e^2*x^2 + d^2))/e^3

________________________________________________________________________________________

Sympy [C]  time = 6.75831, size = 280, normalized size = 2.48 \begin{align*} d \left (\begin{cases} - \frac{i d^{4} \operatorname{acosh}{\left (\frac{e x}{d} \right )}}{8 e^{3}} + \frac{i d^{3} x}{8 e^{2} \sqrt{-1 + \frac{e^{2} x^{2}}{d^{2}}}} - \frac{3 i d x^{3}}{8 \sqrt{-1 + \frac{e^{2} x^{2}}{d^{2}}}} + \frac{i e^{2} x^{5}}{4 d \sqrt{-1 + \frac{e^{2} x^{2}}{d^{2}}}} & \text{for}\: \frac{\left |{e^{2} x^{2}}\right |}{\left |{d^{2}}\right |} > 1 \\\frac{d^{4} \operatorname{asin}{\left (\frac{e x}{d} \right )}}{8 e^{3}} - \frac{d^{3} x}{8 e^{2} \sqrt{1 - \frac{e^{2} x^{2}}{d^{2}}}} + \frac{3 d x^{3}}{8 \sqrt{1 - \frac{e^{2} x^{2}}{d^{2}}}} - \frac{e^{2} x^{5}}{4 d \sqrt{1 - \frac{e^{2} x^{2}}{d^{2}}}} & \text{otherwise} \end{cases}\right ) - e \left (\begin{cases} - \frac{2 d^{4} \sqrt{d^{2} - e^{2} x^{2}}}{15 e^{4}} - \frac{d^{2} x^{2} \sqrt{d^{2} - e^{2} x^{2}}}{15 e^{2}} + \frac{x^{4} \sqrt{d^{2} - e^{2} x^{2}}}{5} & \text{for}\: e \neq 0 \\\frac{x^{4} \sqrt{d^{2}}}{4} & \text{otherwise} \end{cases}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(-e**2*x**2+d**2)**(3/2)/(e*x+d),x)

[Out]

d*Piecewise((-I*d**4*acosh(e*x/d)/(8*e**3) + I*d**3*x/(8*e**2*sqrt(-1 + e**2*x**2/d**2)) - 3*I*d*x**3/(8*sqrt(
-1 + e**2*x**2/d**2)) + I*e**2*x**5/(4*d*sqrt(-1 + e**2*x**2/d**2)), Abs(e**2*x**2)/Abs(d**2) > 1), (d**4*asin
(e*x/d)/(8*e**3) - d**3*x/(8*e**2*sqrt(1 - e**2*x**2/d**2)) + 3*d*x**3/(8*sqrt(1 - e**2*x**2/d**2)) - e**2*x**
5/(4*d*sqrt(1 - e**2*x**2/d**2)), True)) - e*Piecewise((-2*d**4*sqrt(d**2 - e**2*x**2)/(15*e**4) - d**2*x**2*s
qrt(d**2 - e**2*x**2)/(15*e**2) + x**4*sqrt(d**2 - e**2*x**2)/5, Ne(e, 0)), (x**4*sqrt(d**2)/4, True))

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(-e^2*x^2+d^2)^(3/2)/(e*x+d),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError